Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 5.626
Filtrar
Mais filtros











Intervalo de ano de publicação
1.
Aging (Albany NY) ; 16(7): 6550-6565, 2024 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-38604154

RESUMO

BACKGROUND: The treatment and prognosis of patients with advanced hepatocellular carcinoma (HCC) have been a major medical challenge. Unraveling the landscape of tumor immune infiltrating cells (TIICs) in the immune microenvironment of HCC is of great significance to probe the molecular mechanisms. METHODS: Based on single-cell data of HCC, the cell landscape was revealed from the perspective of TIICs. Special cell subpopulations were determined by the expression levels of marker genes. Differential expression analysis was conducted. The activity of each subpopulation was determined based on the highly expressed genes. CTLA4+ T-cell subpopulations affecting the prognosis of HCC were determined based on survival analysis. A single-cell regulatory network inference and clustering analysis was also performed to determine the transcription factor regulatory networks in the CTLA4+ T cell subpopulations. RESULTS: 10 cell types were identified and NK cells and T cells showed high abundance in tumor tissues. Two NK cells subpopulations were present, FGFBP2+ NK cells, B3GNT7+ NK cells. Four T cells subpopulations were present, LAG3+ T cells, CTLA4+ T cells, RCAN3+ T cells, and HPGDS+ Th2 cells. FGFBP2+ NK cells, and CTLA4+ T cells were the exhaustive subpopulation. High CTLA4+ T cells contributed to poor prognostic outcomes and promoted tumor progression. Finally, a network of transcription factors regulated by NR3C1, STAT1, and STAT3, which were activated, was present in CTLA4+ T cells. CONCLUSION: CTLA4+ T cell subsets in HCC exhibited functional exhaustion characteristics that probably inhibited T cell function through a transcription factor network dominated by NR3C1, STAT1, and STAT3.


Assuntos
Carcinoma Hepatocelular , Células Matadoras Naturais , Neoplasias Hepáticas , Análise de Célula Única , Microambiente Tumoral , Humanos , Carcinoma Hepatocelular/imunologia , Carcinoma Hepatocelular/patologia , Carcinoma Hepatocelular/genética , Neoplasias Hepáticas/imunologia , Neoplasias Hepáticas/patologia , Neoplasias Hepáticas/genética , Células Matadoras Naturais/imunologia , Células Matadoras Naturais/metabolismo , Microambiente Tumoral/imunologia , Antígeno CTLA-4/metabolismo , Antígeno CTLA-4/genética , Linfócitos do Interstício Tumoral/imunologia , Linfócitos do Interstício Tumoral/metabolismo , Prognóstico , Regulação Neoplásica da Expressão Gênica , Subpopulações de Linfócitos T/imunologia , Subpopulações de Linfócitos T/metabolismo
2.
J Dent Res ; 103(5): 546-554, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38619065

RESUMO

The intricate formation of the palate involves a series of complex events, yet its mechanistic basis remains uncertain. To explore major cell populations in the palate and their roles during development, we constructed a spatiotemporal transcription landscape of palatal cells. Palate samples from C57BL/6 J mice at embryonic days 12.5 (E12.5), 14.5 (E14.5), and 16.5 (E16.5) underwent single-cell RNA sequencing (scRNA-seq) to identify distinct cell subsets. In addition, spatial enhanced resolution omics-sequencing (stereo-seq) was used to characterize the spatial distribution of these subsets. Integrating scRNA-seq and stereo-seq with CellTrek annotated mesenchymal and epithelial cellular components of the palate during development. Furthermore, cellular communication networks between these cell subpopulations were analyzed to discover intercellular signaling during palate development. From the analysis of the middle palate, both mesenchymal and epithelial populations were spatially segregated into 3 domains. The middle palate mesenchymal subpopulations were associated with tooth formation, ossification, and tissue remodeling, with initial state cell populations located proximal to the dental lamina. The nasal epithelium of the palatal shelf exhibited richer humoral immune responses than the oral side. Specific enrichment of Tgfß3 and Pthlh signals in the midline epithelial seam at E14.5 suggested a role in epithelial-mesenchymal transition. In summary, this study provides high-resolution transcriptomic information, contributing to a deeper mechanistic understanding of palate biology and pathophysiology.


Assuntos
Camundongos Endogâmicos C57BL , Palato , Animais , Camundongos , Palato/embriologia , Fator de Crescimento Transformador beta3/genética , Análise de Célula Única , Células Epiteliais , Análise de Sequência de RNA , Regulação da Expressão Gênica no Desenvolvimento , Feminino
3.
BMC Med Genomics ; 17(1): 103, 2024 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-38654290

RESUMO

BACKGROUND: Hepatocellular carcinoma represents a significant global burden in terms of cancer-related mortality, posing a substantial risk to human health. Despite the availability of various treatment modalities, the overall survival rates for patients with hepatocellular carcinoma remain suboptimal. The objective of this study was to explore the potential of novel biomarkers and to establish a novel predictive signature utilizing multiple transcriptome profiles. METHODS: The GSE115469 and CNP0000650 cohorts were utilized for single cell analysis and gene identification. The Cancer Genome Atlas (TCGA) and International Cancer Genome Consortium (ICGC) datasets were utilized in the development and evaluation of a predictive signature. The expressions of hepatocyte-specific genes were further validated using the GSE135631 cohort. Furthermore, immune infiltration results, immunotherapy response prediction, somatic mutation frequency, tumor mutation burden, and anticancer drug sensitivity were analyzed based on various risk scores. Subsequently, functional enrichment analysis was performed on the differential genes identified in the risk model. Moreover, we investigated the expression of particular genes in chronic liver diseases utilizing datasets GSE135251 and GSE142530. RESULTS: Our findings revealed hepatocyte-specific genes (ADH4, LCAT) with notable alterations during cell maturation and differentiation, leading to the development of a novel predictive signature. The analysis demonstrated the efficacy of the model in predicting outcomes, as evidenced by higher risk scores and poorer prognoses in the high-risk group. Additionally, a nomogram was devised to forecast the survival rates of patients at 1, 3, and 5 years. Our study demonstrated that the predictive model may play a role in modulating the immune microenvironment and impacting the anti-tumor immune response in hepatocellular carcinoma. The high-risk group exhibited a higher frequency of mutations and was more likely to benefit from immunotherapy as a treatment option. Additionally, we confirmed that the downregulation of hepatocyte-specific genes may indicate the progression of hepatocellular carcinoma and aid in the early diagnosis of the disease. CONCLUSION: Our research findings indicate that ADH4 and LCAT are genes that undergo significant changes during the differentiation of hepatocytes into cancer cells. Additionally, we have created a unique predictive signature based on genes specific to hepatocytes.


Assuntos
Carcinoma Hepatocelular , Hepatócitos , Neoplasias Hepáticas , Análise de Célula Única , Humanos , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/patologia , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/patologia , Hepatócitos/metabolismo , Hepatócitos/patologia , Biomarcadores Tumorais/genética , Análise de Sequência de RNA , Regulação Neoplásica da Expressão Gênica , Transcriptoma , Perfilação da Expressão Gênica , Prognóstico , Masculino
4.
Nat Commun ; 15(1): 3475, 2024 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-38658552

RESUMO

Somatic copy number alterations (SCNAs) are pervasive in advanced human cancers, but their prevalence and spatial distribution in early-stage, localized tumors and their surrounding normal tissues are poorly characterized. Here, we perform multi-region, single-cell DNA sequencing to characterize the SCNA landscape across tumor-rich and normal tissue in two male patients with localized prostate cancer. We identify two distinct karyotypes: 'pseudo-diploid' cells harboring few SCNAs and highly aneuploid cells. Pseudo-diploid cells form numerous small-sized subclones ranging from highly spatially localized to broadly spread subclones. In contrast, aneuploid cells do not form subclones and are detected throughout the prostate, including normal tissue regions. Highly localized pseudo-diploid subclones are confined within tumor-rich regions and carry deletions in multiple tumor-suppressor genes. Our study reveals that SCNAs are widespread in normal and tumor regions across the prostate in localized prostate cancer patients and suggests that a subset of pseudo-diploid cells drive tumorigenesis in the aging prostate.


Assuntos
Variações do Número de Cópias de DNA , Neoplasias da Próstata , Análise de Célula Única , Humanos , Masculino , Neoplasias da Próstata/genética , Neoplasias da Próstata/patologia , Aneuploidia , Próstata/patologia , Próstata/metabolismo , Células Clonais , Diploide , Idoso
5.
Commun Biol ; 7(1): 496, 2024 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-38658617

RESUMO

Osteosarcoma (OS) is a heterogeneous, aggressive malignancy of the bone that disproportionally affects children and adolescents. Therapeutic interventions for OS are limited, which is in part due to the complex tumor microenvironment (TME). As such, we used single-cell RNA sequencing (scRNA-seq) to describe the cellular and molecular composition of the TME in 6 treatment-naïve dogs with spontaneously occurring primary OS. Through analysis of 35,310 cells, we identified 41 transcriptomically distinct cell types including the characterization of follicular helper T cells, mature regulatory dendritic cells (mregDCs), and 8 tumor-associated macrophage (TAM) populations. Cell-cell interaction analysis predicted that mregDCs and TAMs play key roles in modulating T cell mediated immunity. Furthermore, we completed cross-species cell type gene signature homology analysis and found a high degree of similarity between human and canine OS. The data presented here act as a roadmap of canine OS which can be applied to advance translational immuno-oncology research.


Assuntos
Neoplasias Ósseas , Doenças do Cão , Osteossarcoma , Análise de Sequência de RNA , Análise de Célula Única , Microambiente Tumoral , Cães , Animais , Osteossarcoma/genética , Osteossarcoma/veterinária , Osteossarcoma/imunologia , Osteossarcoma/patologia , Análise de Sequência de RNA/veterinária , Neoplasias Ósseas/genética , Neoplasias Ósseas/veterinária , Neoplasias Ósseas/imunologia , Neoplasias Ósseas/patologia , Doenças do Cão/genética , Doenças do Cão/imunologia , Doenças do Cão/patologia , Microambiente Tumoral/imunologia , Microambiente Tumoral/genética , Transcriptoma , Feminino , Regulação Neoplásica da Expressão Gênica , Masculino
6.
Sci Rep ; 14(1): 9457, 2024 04 24.
Artigo em Inglês | MEDLINE | ID: mdl-38658627

RESUMO

Increased use of therapeutic monoclonal antibodies and the relatively high manufacturing costs fuel the need for more efficient production methods. Here we introduce a novel, fast, robust, and safe isolation platform for screening and isolating antibody-producing cell lines using a nanowell chip and an innovative single-cell isolation method. An anti-Her2 antibody producing CHO cell pool was used as a model. The platform; (1) Assures the single-cell origin of the production clone, (2) Detects the antibody production of individual cells and (3) Isolates and expands the individual cells based on their antibody production. Using the nanowell platform we demonstrated an 1.8-4.5 increase in anti-Her2 production by CHO cells that were screened and isolated with the nanowell platform compared to CHO cells that were not screened. This increase was also shown in Fed-Batch cultures where selected high production clones showed titers of 19-100 mg/L on harvest day, while the low producer cells did not show any detectable anti-Her2 IgG production. The screening of thousands of single cells is performed under sterile conditions and the individual cells were cultured in buffers and reagents without animal components. The time required from seeding a single cell and measuring the antibody production to fully expanded clones with increased Her-2 production was 4-6 weeks.


Assuntos
Anticorpos Monoclonais , Cricetulus , Receptor ErbB-2 , Células CHO , Animais , Receptor ErbB-2/metabolismo , Receptor ErbB-2/imunologia , Anticorpos Monoclonais/imunologia , Anticorpos Monoclonais/biossíntese , Células Produtoras de Anticorpos/imunologia , Células Produtoras de Anticorpos/metabolismo , Humanos , Separação Celular/métodos , Análise de Célula Única/métodos
7.
Commun Biol ; 7(1): 484, 2024 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-38649520

RESUMO

Spontaneous cancers in companion dogs are robust models of human disease. Tracking tumor-specific immune responses in these models requires reagents to perform species-specific single cell T cell receptor sequencing (scTCRseq). scTCRseq and integration with scRNA data have not been demonstrated on companion dogs with cancer. Here, five healthy dogs, two dogs with T cell lymphoma and four dogs with melanoma are selected to demonstrate applicability of scTCRseq in a cancer immunotherapy setting. Single-cell suspensions of PBMCs or lymph node aspirates are profiled using scRNA and dog-specific scTCRseq primers. In total, 77,809 V(D)J-expressing cells are detected, with an average of 3498 (348 - 5,971) unique clonotypes identified per sample. In total, 29/34, 40/40, 22/22 and 9/9 known functional TRAV, TRAJ, TRBV and TRBJ gene segments are observed respectively. Pseudogene or otherwise defective gene segments are also detected supporting re-annotation of several as functional. Healthy dogs exhibit highly diverse repertoires, T cell lymphomas exhibit clonal repertoires, and vaccine-treated melanoma dogs are dominated by a small number of highly abundant clonotypes. scRNA libraries define large clusters of V(D)J-expressing CD8+ and CD4 + T cells. Dominant clonotypes observed in melanoma PBMCs are predominantly CD8 + T cells, with activated phenotypes, suggesting possible anti-tumor T cell populations.


Assuntos
Receptores de Antígenos de Linfócitos T , Análise de Célula Única , Animais , Cães , Receptores de Antígenos de Linfócitos T/genética , Receptores de Antígenos de Linfócitos T/metabolismo , Receptores de Antígenos de Linfócitos T/imunologia , Melanoma/genética , Melanoma/imunologia , Melanoma/veterinária , Doenças do Cão/imunologia , Doenças do Cão/genética , Linfoma de Células T/imunologia , Linfoma de Células T/veterinária , Linfoma de Células T/genética
8.
Sci Rep ; 14(1): 9186, 2024 04 22.
Artigo em Inglês | MEDLINE | ID: mdl-38649690

RESUMO

Osteosarcoma (OS) is the most common malignant bone tumor with high pathological heterogeneity. Our study aimed to investigate disulfidptosis-related modification patterns in OS and their relationship with survival outcomes in patients with OS. We analyzed the single-cell-level expression profiles of disulfidptosis-related genes (DSRGs) in both OS microenvironment and OS subclusters, and HMGB1 was found to be crucial for intercellular regulation of OS disulfidptosis. Next, we explored the molecular clusters of OS based on DSRGs and related immune cell infiltration using transcriptome data. Subsequently, the hub genes of disulfidptosis in OS were screened by applying multiple machine models. In vitro and patient experiments validated our results. Three main disulfidptosis-related molecular clusters were defined in OS, and immune infiltration analysis suggested high immune heterogeneity between distinct clusters. The in vitro experiment confirmed decreased cell viability of OS after ACTB silencing and higher expression of ACTB in patients with lower immune scores. Our study systematically revealed the underlying relationship between disulfidptosis and OS at the single-cell level, identified disulfidptosis-related subtypes, and revealed the potential role of ACTB expression in OS disulfidptosis.


Assuntos
Neoplasias Ósseas , Regulação Neoplásica da Expressão Gênica , Osteossarcoma , Análise de Célula Única , Transcriptoma , Microambiente Tumoral , Humanos , Osteossarcoma/genética , Osteossarcoma/patologia , Osteossarcoma/mortalidade , Osteossarcoma/metabolismo , Microambiente Tumoral/genética , Prognóstico , Neoplasias Ósseas/genética , Neoplasias Ósseas/patologia , Neoplasias Ósseas/mortalidade , Neoplasias Ósseas/metabolismo , Linhagem Celular Tumoral , Perfilação da Expressão Gênica , Proteína HMGB1/genética , Proteína HMGB1/metabolismo , Actinas/metabolismo , Actinas/genética
9.
BMC Genomics ; 25(1): 393, 2024 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-38649804

RESUMO

BACKGROUND: Accurately deciphering clonal copy number substructure can provide insights into the evolutionary mechanism of cancer, and clustering single-cell copy number profiles has become an effective means to unmask intra-tumor heterogeneity (ITH). However, copy numbers inferred from single-cell DNA sequencing (scDNA-seq) data are error-prone due to technically confounding factors such as amplification bias and allele-dropout, and this makes it difficult to precisely identify the ITH. RESULTS: We introduce a hybrid model called scGAL to infer clonal copy number substructure. It combines an autoencoder with a generative adversarial network to jointly analyze independent single-cell copy number profiles and gene expression data from same cell line. Under an adversarial learning framework, scGAL exploits complementary information from gene expression data to relieve the effects of noise in copy number data, and learns latent representations of scDNA-seq cells for accurate inference of the ITH. Evaluation results on three real cancer datasets suggest scGAL is able to accurately infer clonal architecture and surpasses other similar methods. In addition, assessment of scGAL on various simulated datasets demonstrates its high robustness against the changes of data size and distribution. scGAL can be accessed at: https://github.com/zhyu-lab/scgal . CONCLUSIONS: Joint analysis of independent single-cell copy number and gene expression data from a same cell line can effectively exploit complementary information from individual omics, and thus gives more refined indication of clonal copy number substructure.


Assuntos
Variações do Número de Cópias de DNA , Neoplasias , Análise de Célula Única , Análise de Célula Única/métodos , Humanos , Neoplasias/genética , Neoplasias/patologia , Algoritmos , Linhagem Celular Tumoral , Análise da Expressão Gênica de Célula Única
10.
BMC Med Genomics ; 17(1): 96, 2024 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-38650036

RESUMO

BACKGROUND: The molecular mechanism of fetal cystic hygroma (CH) is still unclear, and no study has previously reported the transcriptome changes of single cells in CH. In this study, single-cell transcriptome sequencing (scRNA-seq) was used to investigate the characteristics of cell subsets in the lesion tissues of CH patients. METHODS: Lymphoid tissue collected from CH patients and control donors for scRNA-seq analysis. Differentially expressed gene enrichment in major cell subpopulations as well as cell-cell communication were analyzed. At the same time, the expression and interactions of important VEGF signaling pathway molecules were analyzed, and potential transcription factors that could bind to KDR (VEGFR2) were predicted. RESULTS: The results of scRNA-seq showed that fibroblasts accounted for the largest proportion in the lymphatic lesions of CH patients. There was a significant increase in the proportion of lymphatic endothelial cell subsets between the cases and controls. The VEGF signaling pathway is enriched in lymphatic endothelial cells and participates in the regulation of cell-cell communication between lymphatic endothelial cells and other cells. The key regulatory gene KDR in the VEGF signaling pathway is highly expressed in CH patients and interacts with other differentially expressed EDN1, TAGLN, and CLDN5 Finally, we found that STAT1 could bind to the KDR promoter region, which may play an important role in promoting KDR up-regulation. CONCLUSION: Our comprehensive delineation of the cellular composition in tumor tissues of CH patients using single-cell RNA-sequencing identified the enrichment of lymphatic endothelial cells in CH and highlighted the activation of the VEGF signaling pathway in lymphoid endothelial cells as a potential modulator. The molecular and cellular pathogenesis of fetal cystic hygroma (CH) remains largely unknown. This study examined the distribution and gene expression signature of each cell subpopulation and the possible role of VEGF signaling in lymphatic endothelial cells in regulating the progression of CH by single-cell transcriptome sequencing. The enrichment of lymphatic endothelial cells in CH and the activation of the VEGF signaling pathway in lymphatic endothelial cells provide some clues to the pathogenesis of CH from the perspective of cell subpopulations.


Assuntos
Linfangioma Cístico , Análise de Célula Única , Receptor 2 de Fatores de Crescimento do Endotélio Vascular , Humanos , Linfangioma Cístico/genética , Linfangioma Cístico/metabolismo , Linfangioma Cístico/patologia , Feminino , Receptor 2 de Fatores de Crescimento do Endotélio Vascular/metabolismo , Receptor 2 de Fatores de Crescimento do Endotélio Vascular/genética , Análise de Sequência de RNA , Transdução de Sinais , Fator A de Crescimento do Endotélio Vascular/metabolismo , Fator A de Crescimento do Endotélio Vascular/genética , Fator de Transcrição STAT1/metabolismo , Fator de Transcrição STAT1/genética , Transcriptoma
11.
Biosensors (Basel) ; 14(4)2024 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-38667168

RESUMO

Prostate cancer (PCa) displays diverse intra-tumoral traits, impacting its progression and treatment outcomes. This study aimed to refine PCa cell culture conditions for dynamic monitoring of androgen receptor (AR) activity at the single-cell level. We introduced an extracellular matrix-Matrigel (ECM-M) culture model, enhancing cellular tracking during bioluminescence single-cell imaging while improving cell viability. ECM-M notably tripled the traceability of poorly adherent PCa cells, facilitating robust single-cell tracking, without impeding substrate permeability or AR response. This model effectively monitored AR modulation by antiandrogens across various PCa cell lines. Single-cell imaging unveiled heterogeneous antiandrogen responses within populations, correlating non-responsive cell proportions with drug IC50 values. Integrating ECM-M culture with the PSEBC-TSTA biosensor enabled precise characterization of ARi responsiveness within diverse cell populations. Our ECM-M model stands as a promising tool to assess heterogeneous single-cell treatment responses in cancer, offering insights to link drug responses to intracellular signaling dynamics. This approach enhances our comprehension of the nuanced and dynamic nature of PCa treatment responses.


Assuntos
Matriz Extracelular , Neoplasias da Próstata , Humanos , Neoplasias da Próstata/tratamento farmacológico , Neoplasias da Próstata/patologia , Matriz Extracelular/metabolismo , Masculino , Linhagem Celular Tumoral , Antagonistas de Androgênios/farmacologia , Receptores Androgênicos/metabolismo , Análise de Célula Única , Microscopia , Técnicas Biossensoriais , Medições Luminescentes
12.
Biosensors (Basel) ; 14(4)2024 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-38667182

RESUMO

Single-cell RNA sequencing is a high-throughput novel method that provides transcriptional profiling of individual cells within biological samples. This method typically uses microfluidics systems to uncover the complex intercellular communication networks and biological pathways buried within highly heterogeneous cell populations in tissues. One important application of this technology sits in the fields of organ and stem cell transplantation, where complications such as graft rejection and other post-transplantation life-threatening issues may occur. In this review, we first focus on research in which single-cell RNA sequencing is used to study the transcriptional profile of transplanted tissues. This technology enables the analysis of the donor and recipient cells and identifies cell types and states associated with transplant complications and pathologies. We also review the use of single-cell RNA sequencing in stem cell implantation. This method enables studying the heterogeneity of normal and pathological stem cells and the heterogeneity in cell populations. With their remarkably rapid pace, the single-cell RNA sequencing methodologies will potentially result in breakthroughs in clinical transplantation in the coming years.


Assuntos
Análise de Sequência de RNA , Análise de Célula Única , Humanos , Transplante de Órgãos , Animais , Transplante de Células
13.
Cells ; 13(8)2024 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-38667272

RESUMO

Clonal hematopoiesis of indeterminate potential (CHIP) refers to the phenomenon where a hematopoietic stem cell acquires fitness-increasing mutation(s), resulting in its clonal expansion. CHIP is frequently observed in multiple myeloma (MM) patients, and it is associated with a worse outcome. High-throughput amplicon-based single-cell DNA sequencing was performed on circulating CD34+ cells collected from twelve MM patients before autologous stem cell transplantation (ASCT). Moreover, in four MM patients, longitudinal samples either before or post-ASCT were collected. Single-cell sequencing and data analysis were assessed using the MissionBio Tapestri® platform, with a targeted panel of 20 leukemia-associated genes. We detected CHIP pathogenic mutations in 6/12 patients (50%) at the time of transplant. The most frequently mutated genes were TET2, EZH2, KIT, DNMT3A, and ASXL1. In two patients, we observed co-occurring mutations involving an epigenetic modifier (i.e., DNMT3A) and/or a gene involved in splicing machinery (i.e., SF3B1) and/or a tyrosine kinase receptor (i.e., KIT) in the same clone. Longitudinal analysis of paired samples revealed a positive selection of mutant high-fitness clones over time, regardless of their affinity with a major or minor sub-clone. Copy number analysis of the panel of all genes did not show any numerical alterations present in stem cell compartment. Moreover, we observed a tendency of CHIP-positive patients to achieve a suboptimal response to therapy compared to those without. A sub-clone dynamic of high-fitness mutations over time was confirmed.


Assuntos
Hematopoiese Clonal , Mieloma Múltiplo , Mutação , Análise de Célula Única , Humanos , Mieloma Múltiplo/genética , Análise de Célula Única/métodos , Mutação/genética , Masculino , Pessoa de Meia-Idade , Feminino , Hematopoiese Clonal/genética , Idoso , Transplante de Células-Tronco Hematopoéticas , Análise de Sequência de DNA/métodos , Adulto , Evolução Clonal/genética
14.
Cell Commun Signal ; 22(1): 212, 2024 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-38566100

RESUMO

The pathogenesis of Parkinson's disease (PD) is strongly associated with neuroinflammation, and type I interferons (IFN-I) play a crucial role in regulating immune and inflammatory responses. However, the specific features of IFN in different cell types and the underlying mechanisms of PD have yet to be fully described. In this study, we analyzed the GSE157783 dataset, which includes 39,024 single-cell RNA sequencing results for five PD patients and six healthy controls from the Gene Expression Omnibus database. After cell type annotation, we intersected differentially expressed genes in each cell subcluster with genes collected in The Interferome database to generate an IFN-I-stimulated gene set (ISGs). Based on this gene set, we used the R package AUCell to score each cell, representing the IFN-I activity. Additionally, we performed monocle trajectory analysis, and single-cell regulatory network inference and clustering (SCENIC) to uncover the underlying mechanisms. In silico gene perturbation and subsequent experiments confirm NFATc2 regulation of type I interferon response and neuroinflammation. Our analysis revealed that microglia, endothelial cells, and pericytes exhibited the highest activity of IFN-I. Furthermore, single-cell trajectory detection demonstrated that microglia in the midbrain of PD patients were in a pro-inflammatory activation state, which was validated in the 1-Methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-induced PD mouse model as well. We identified transcription factors NFATc2, which was significantly up-regulated and involved in the expression of ISGs and activation of microglia in PD. In the 1-Methyl-4-phenylpyridinium (MPP+)-induced BV2 cell model, the suppression of NFATc2 resulted in a reduction in IFN-ß levels, impeding the phosphorylation of STAT1, and attenuating the activation of the NF-κB pathway. Furthermore, the downregulation of NFATc2 mitigated the detrimental effects on SH-SY5Y cells co-cultured in conditioned medium. Our study highlights the critical role of microglia in type I interferon responses in PD. Additionally, we identified transcription factors NFATc2 as key regulators of aberrant type I interferon responses and microglial pro-inflammatory activation in PD. These findings provide new insights into the pathogenesis of PD and may have implications for the development of novel therapeutic strategies.


Assuntos
Interferon Tipo I , Neuroblastoma , Doença de Parkinson , Camundongos , Animais , Humanos , Doença de Parkinson/genética , Doença de Parkinson/metabolismo , Doença de Parkinson/patologia , Doenças Neuroinflamatórias , Células Endoteliais/metabolismo , NF-kappa B/metabolismo , Análise de Célula Única , Camundongos Endogâmicos C57BL
15.
Fluids Barriers CNS ; 21(1): 31, 2024 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-38575991

RESUMO

BACKGROUND: In the choroid plexus and pituitary gland, vasculature is known to have a permeable, fenestrated phenotype which allows for the free passage of molecules in contrast to the blood brain barrier observed in the rest of the CNS. The endothelium of these compartments, along with secretory, neural-lineage cells (choroid epithelium and pituitary endocrine cells) have been studied in detail, but less attention has been given to the perivascular mesenchymal cells of these compartments. METHODS: The Hic1CreERT2 Rosa26LSL-TdTomato mouse model was used in conjunction with a PdgfraH2B-EGFP mouse model to examine mesenchymal cells, which can be subdivided into Pdgfra+ fibroblasts and Pdgfra- pericytes within the choroid plexus (CP) and pituitary gland (PG), by histological, immunofluorescence staining and single-cell RNA-sequencing analyses. RESULTS: We found that both CP and PG possess substantial populations of distinct Hic1+ mesenchymal cells, including an abundance of Pdgfra+ fibroblasts. Within the pituitary, we identified distinct subpopulations of Hic1+ fibroblasts in the glandular anterior pituitary and the neurosecretory posterior pituitary. We also identified multiple distinct markers of CP, PG, and the meningeal mesenchymal compartment, including alkaline phosphatase, indole-n-methyltransferase and CD34. CONCLUSIONS: Novel, distinct subpopulations of mesenchymal cells can be found in permeable vascular interfaces, including the CP, PG, and meninges, and make distinct contributions to both organs through the production of structural proteins, enzymes, transporters, and trophic molecules.


Assuntos
Células-Tronco Mesenquimais , Proteína Vermelha Fluorescente , Camundongos , Animais , Barreira Hematoencefálica/metabolismo , Fibroblastos , Análise de Célula Única , Plexo Corióideo/metabolismo
16.
Genome Med ; 16(1): 60, 2024 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-38658971

RESUMO

BACKGROUND: Pituitary neuroendocrine tumors (PitNETs) are common gland neoplasms demonstrating distinctive transcription factors. Although the role of immune cells in PitNETs has been widely recognized, the precise immunological environment and its control over tumor cells are poorly understood. METHODS: The heterogeneity, spatial distribution, and clinical significance of macrophages in PitNETs were analyzed using single-cell RNA sequencing (scRNA-seq), bulk RNA-seq, spatial transcriptomics, immunohistochemistry, and multiplexed quantitative immunofluorescence (QIF). Cell viability, cell apoptosis assays, and in vivo subcutaneous xenograft experiments have confirmed that INHBA-ACVR1B influences the process of tumor cell apoptosis. RESULTS: The present study evaluated scRNA-seq data from 23 PitNET samples categorized into 3 primary lineages. The objective was to explore the diversity of tumors and the composition of immune cells across these lineages. Analyzed data from scRNA-seq and 365 bulk RNA sequencing samples conducted in-house revealed the presence of three unique subtypes of tumor immune microenvironment (TIME) in PitNETs. These subtypes were characterized by varying levels of immune infiltration, ranging from low to intermediate to high. In addition, the NR5A1 lineage is primarily associated with the subtype characterized by limited infiltration of immune cells. Tumor-associated macrophages (TAMs) expressing CX3CR1+, C1Q+, and GPNMB+ showed enhanced contact with tumor cells expressing NR5A1 + , TBX19+, and POU1F1+, respectively. This emphasizes the distinct interaction axes between TAMs and tumor cells based on their lineage. Moreover, the connection between CX3CR1+ macrophages and tumor cells via INHBA-ACVR1B regulates tumor cell apoptosis. CONCLUSIONS: In summary, the different subtypes of TIME and the interaction between TAM and tumor cells offer valuable insights into the control of TIME that affects the development of PitNET. These findings can be utilized as prospective targets for therapeutic interventions.


Assuntos
Macrófagos , Tumores Neuroendócrinos , Neoplasias Hipofisárias , Análise de Célula Única , Transcriptoma , Microambiente Tumoral , Humanos , Tumores Neuroendócrinos/genética , Tumores Neuroendócrinos/patologia , Tumores Neuroendócrinos/imunologia , Tumores Neuroendócrinos/metabolismo , Neoplasias Hipofisárias/genética , Neoplasias Hipofisárias/imunologia , Neoplasias Hipofisárias/patologia , Neoplasias Hipofisárias/metabolismo , Microambiente Tumoral/imunologia , Microambiente Tumoral/genética , Animais , Camundongos , Macrófagos/metabolismo , Macrófagos/imunologia , Macrófagos Associados a Tumor/metabolismo , Macrófagos Associados a Tumor/imunologia , Regulação Neoplásica da Expressão Gênica , Perfilação da Expressão Gênica , Fenótipo , Apoptose/genética , Linhagem da Célula/genética
17.
Int J Mol Sci ; 25(7)2024 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-38612943

RESUMO

Clear cell renal carcinoma (ccRCC), the most common subtype of renal cell carcinoma, has the high heterogeneity of a highly complex tumor microenvironment. Existing clinical intervention strategies, such as target therapy and immunotherapy, have failed to achieve good therapeutic effects. In this article, single-cell transcriptome sequencing (scRNA-seq) data from six patients downloaded from the GEO database were adopted to describe the tumor microenvironment (TME) of ccRCC, including its T cells, tumor-associated macrophages (TAMs), endothelial cells (ECs), and cancer-associated fibroblasts (CAFs). Based on the differential typing of the TME, we identified tumor cell-specific regulatory programs that are mediated by three key transcription factors (TFs), whilst the TF EPAS1/HIF-2α was identified via drug virtual screening through our analysis of ccRCC's protein structure. Then, a combined deep graph neural network and machine learning algorithm were used to select anti-ccRCC compounds from bioactive compound libraries, including the FDA-approved drug library, natural product library, and human endogenous metabolite compound library. Finally, five compounds were obtained, including two FDA-approved drugs (flufenamic acid and fludarabine), one endogenous metabolite, one immunology/inflammation-related compound, and one inhibitor of DNA methyltransferase (N4-methylcytidine, a cytosine nucleoside analogue that, like zebularine, has the mechanism of inhibiting DNA methyltransferase). Based on the tumor microenvironment characteristics of ccRCC, five ccRCC-specific compounds were identified, which would give direction of the clinical treatment for ccRCC patients.


Assuntos
Carcinoma de Células Renais , Aprendizado Profundo , Neoplasias Renais , Humanos , Carcinoma de Células Renais/tratamento farmacológico , Células Endoteliais , Algoritmos , Análise de Célula Única , Antimetabólitos , Metilases de Modificação do DNA , Descoberta de Drogas , Neoplasias Renais/tratamento farmacológico , DNA , Microambiente Tumoral
18.
Int J Oral Sci ; 16(1): 29, 2024 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-38622125

RESUMO

Head and neck squamous cell carcinoma (HNSCC) is characterized by high recurrence or distant metastases rate and the prognosis is challenging. There is mounting evidence that tumor-infiltrating B cells (TIL-Bs) have a crucial, synergistic role in tumor control. However, little is known about the role TIL-Bs play in immune microenvironment and the way TIL-Bs affect the outcome of immune checkpoint blockade. Using single-cell RNA sequencing (scRNA-seq) data from the Gene Expression Omnibus (GEO) database, the study identified distinct gene expression patterns in TIL-Bs. HNSCC samples were categorized into TIL-Bs inhibition and TIL-Bs activation groups using unsupervised clustering. This classification was further validated with TCGA HNSCC data, correlating with patient prognosis, immune cell infiltration, and response to immunotherapy. We found that the B cells activation group exhibited a better prognosis, higher immune cell infiltration, and distinct immune checkpoint levels, including elevated PD-L1. A prognostic model was also developed and validated, highlighting four genes as potential biomarkers for predicting survival outcomes in HNSCC patients. Overall, this study provides a foundational approach for B cells-based tumor classification in HNSCC, offering insights into targeted treatment and immunotherapy strategies.


Assuntos
Neoplasias de Cabeça e Pescoço , Humanos , Carcinoma de Células Escamosas de Cabeça e Pescoço/terapia , Prognóstico , Biomarcadores , Neoplasias de Cabeça e Pescoço/terapia , Análise de Célula Única , Microambiente Tumoral
19.
J Transl Med ; 22(1): 380, 2024 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-38654277

RESUMO

OBJECTIVE: Proliferative nodular formation represents a characteristic pathological feature of benign prostatic hyperplasia (BPH) and serves as the primary cause for prostate volume enlargement and consequent lower urinary tract symptoms (LUTS). Its specific mechanism is largely unknown, although several cellular processes have been reported to be involved in BPH initiation and development and highlighted the crucial role of epithelial cells in proliferative nodular formation. However, the technological limitations hinder the in vivo investigation of BPH patients. METHODS: The robust cell type decomposition (RCTD) method was employed to integrate spatial transcriptomics and single cell RNA sequencing profiles, enabling the elucidation of epithelial cell alterations during nodular formation. Immunofluorescent and immunohistochemical staining was performed for verification. RESULTS: The alterations of epithelial cells during the formation of nodules in BPH was observed, and a distinct subgroup of basal epithelial (BE) cells, referred to as BE5, was identified to play a crucial role in driving this progression through the hypoxia-induced epithelial-mesenchymal transition (EMT) signaling pathway. BE5 served as both the initiating cell during nodular formation and the transitional cell during the transformation from luminal epithelial (LE) to BE cells. A distinguishing characteristic of the BE5 cell subgroup in patients with BPH was its heightened hypoxia and upregulated expression of FOS. Histological verification results confirmed a significant association between c-Fos expression and key biological processes such as hypoxia and cell proliferation, as well as the close relationship between hypoxia and EMT in BPH tissues. Furthermore, a strong link between c-Fos expression and the progression of BPH was also been validated. Additionally, notable functional differences were observed in glandular and stromal nodules regarding BE5 cells, with BE5 in glandular nodules exhibiting enhanced capacities for EMT and cell proliferation characterized by club-like cell markers. CONCLUSIONS: This study elucidated the comprehensive landscape of epithelial cells during in vivo nodular formation in patients, thereby offering novel insights into the initiation and progression of BPH.


Assuntos
Células Epiteliais , Transição Epitelial-Mesenquimal , Hiperplasia Prostática , Análise de Sequência de RNA , Análise de Célula Única , Transcriptoma , Humanos , Masculino , Hiperplasia Prostática/patologia , Hiperplasia Prostática/metabolismo , Hiperplasia Prostática/genética , Células Epiteliais/metabolismo , Células Epiteliais/patologia , Transição Epitelial-Mesenquimal/genética , Transcriptoma/genética , Perfilação da Expressão Gênica , Idoso , Pessoa de Meia-Idade , Proliferação de Células , Análise Espacial
20.
Nat Commun ; 15(1): 3064, 2024 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-38594232

RESUMO

The gastroesophageal squamocolumnar junction (GE-SCJ) is a critical tissue interface between the esophagus and stomach, with significant relevance in the pathophysiology of gastrointestinal diseases. Despite this, the molecular mechanisms underlying GE-SCJ development remain unclear. Using single-cell transcriptomics, organoids, and spatial analysis, we examine the cellular heterogeneity and spatiotemporal dynamics of GE-SCJ development from embryonic to adult mice. We identify distinct transcriptional states and signaling pathways in the epithelial and mesenchymal compartments of the esophagus and stomach during development. Fibroblast-epithelial interactions are mediated by various signaling pathways, including WNT, BMP, TGF-ß, FGF, EGF, and PDGF. Our results suggest that fibroblasts predominantly send FGF and TGF-ß signals to the epithelia, while epithelial cells mainly send PDGF and EGF signals to fibroblasts. We observe differences in the ligands and receptors involved in cell-cell communication between the esophagus and stomach. Our findings provide insights into the molecular mechanisms underlying GE-SCJ development and fibroblast-epithelial crosstalk involved, paving the way to elucidate mechanisms during adaptive metaplasia development and carcinogenesis.


Assuntos
Fator de Crescimento Epidérmico , Junção Esofagogástrica , Animais , Camundongos , Fator de Crescimento Epidérmico/metabolismo , Junção Esofagogástrica/metabolismo , Fator de Crescimento Transformador beta/metabolismo , Fibroblastos/metabolismo , Análise de Célula Única
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA